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ABSTRACT
Social signal processing is a methodology that is used to infer
human inner states, including attitudes, sentiments and impressions,
from verbal and nonverbal multimodal information. The difficulty
in training a social signal recognitionmodel is that the ground-truth
(target) labels given by multiple coders often disagree because the
annotation of social signals such as sentiments is a subjective and
ambiguous task. We introduce weakly supervised learning (WSL)
algorithms to such an inaccurate supervision setting in which the
target label is not necessarily accurate. The novel challenge in
this paper is to explore an effective WSL strategy for recognizing
social signals. The strategy is verified through two multimodal
datasets including audio, visual, and linguistic data collected in a
human-agent dialogue setting. First, we clarify that the proposed
WSL strategy for deep neural networks (DNNs), called tri-teaching
works well in almost all classification tasks. Second, we demonstrate
the effectiveness of integrating WSL and multitask learning (MTL),
which exploits several label types in the datasets. Third, we show
that our proposed approach achieves less accuracy degradation than
an existing training algorithm for a DNN (curriculum learning) in
a cross-corpus setting, with a maximum improvement of 7.2%.
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1 INTRODUCTION
A multimodal dialogue system should be able to naturally com-
municate with users by recognizing their current statuses, such
as emotions and engagement statuses, to generate empathetic and
adaptive responses. Developing such a system is one of the main
challenges in the dialogue system domain. Social signal processing
(SSP) [33] is a key technique that is used to recognize user inner
states, including spoken language and nonverbal behaviors (facial
expression, gesture, prosody, etc.), from multimodal data.

This study presents an effective machine learning (ML) algorithm
for recognizing user social signals in human-machine communi-
cation by addressing the following problems. (i) It is difficult to
determine ground-truth labels of human inner states. Such labels
are usually determined by aggregating annotated labels given by
coders (e.g., throughmajority voting or simple averaging). However,
the annotation of a social signal such as sentiment is a subjective
and ambiguous task, so the annotation results often disagree, and
the results are unreliable. Training samples with such unreliable
labels tend to degrade the performance of supervised learning mod-
els. (ii) It is expensive to collect multimodal communication data
such as human-robot interaction data, so it is not easy to collect a
large-scale corpus in such a setting. We need to train multimodal
recognition models with a limited quantity of data. (iii) Develop-
ing a generalized social signal recognition model is an essential
challenge because multimodal features vary due to differences in
individual personalities and conversational situations (e.g., casual
or formal). The recognition accuracy of a model should be main-
tained even when a model trained with data in a certain situation
is used in another situation for testing.

We propose a weakly supervised multitask learning algorithm
to mitigate the influence of unreliable labels in training datasets.
Weakly supervised learning (WSL) and multitask learning (MTL)
are appropriate for addressing unexplored problems (i) and (ii) si-
multaneously. Therefore, we explore the effectiveness of integrating
WSL algorithms with MTL to recognize social signal labels. We
use multimodal features, including language (words and question
types of system utterances), vision (gestures and expressions), and
acoustics (prosodic aspects and changes in vocal tones), as inputs.

The target task is to recognize multiple labels (interests and sen-
timents) for representing the user states observed in multimodal
human-computer dialogue. In particular, we regard the annotated
labels of user inner states as inaccurate supervision [45] because
these labels sometimes disagree among coders. The aim of utilizing
WSL is to improve the recognition accuracy of the user social signal
labels by removing the effects of such noisy labels. For this purpose,
we use two shared multimodal dialogue datasets from a publicly
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available dialogue corpus that we released [20] 1, which includes
the multimodal (audio and visual) behaviors of participants talk-
ing with a virtual agent. These two datasets were collected with
different dialogue strategies and include three labels that were in-
dependently annotated during each exchange, which consisted of a
system utterance followed by a user utterance. We summarize the
main contributions in this work below.
Weakly supervised learning for SSP: We utilize a WSL algo-
rithm in the inaccurate supervision setting for SSP tasks and demon-
strate its effectiveness in social signal recognition. To our knowl-
edge, applyingWSL for multimodal SSP tasks has yet to be explored.
We also propose an ensemble-based weakly supervised learning
algorithm called tri-teaching, which aims to remove noisy samples
by aggregating the learning results obtained from multiple deep
neural networks. In addition, to avoid the effect of inaccurate super-
vision (Problem (i)), we modify the co-teaching algorithm [13] for
the SSP domain as an efficient weakly supervised learning strategy.
Integrating multitask learning and WSL for SSP: We show
that integrating multitask learning and weakly supervised learning
is effective for recognizing multiple social signals. Multitask learn-
ing alleviates the data sparsity problem, in which a limited number
of labeled data are given (Problem (ii)). This type of integration was
not explored in past studies.
Effectiveness of WSL in cross-corpus settings: Weakly super-
vised multitask learning prevents accuracy degradation in cross-
corpus settings, where the training and test corpora are different
(Problem (iii)). This setting, in which a model trained with one
corpus is used in the recognition module of another situation, is
assumed to be more realistic.

2 RELATEDWORK
2.1 Multimodal social signal processing
The fusion of multimedia or multimodal data, including audio, vi-
sual, and linguistic features, is a promising method for recognizing
social signals, including emotions and engagement. Many existing
studies have focused on developing social signal recognition mod-
els for human-robot/agent interaction settings using multimodal
machine learning techniques [4]. In human-agent or robot inter-
action settings, some studies [7, 27] have focused on engagement
recognition based on users’ multimodal behaviors. Agent systems
with social signal sensing [16, 32] have recently been developed for
training interpersonal communication skills. Several studies have
focused on detecting user interests [10, 15]. Weber et al. [35] devel-
oped a dynamic user modeling approach based on reinforcement
learning, which analyzed a person’s reactions while a robot told
jokes. Nasihati et al. [28] presented dialogue management routines
for a system to engage in multiparty agent-infant interactions.

As another important direction, many studies have focused on
modeling social signals in multimedia settings. Biel et al. [6] pre-
sented a multimodal analysis approach for predicting personality
impressions based on what was said in YouTube videos. Brilman et
al. [8] proposed a prediction model for successful debaters using
multimodal information. Recently, it was shown that deep neural
network (DNN) techniques contribute to accurate multimodal mod-
eling [4] when applied to SSP. A temporally selective attention
1https://doi.org/10.32130/rdata.4.1

model [37], multi-attention recurrent network [41], memory fusion
network [40], and tensor fusion network [39] were proposed for
multimodal sentiment analysis. In another setting, group detection
during natural social gatherings based on standing conversations
was conducted using ubiquitous and multimodal sensing [1, 11].

Many previous studies focused onmodeling one annotation label,
such as engagement, communication skills, personality, or humor.
However, several labels annotating the same data help improve
the recognition accuracy of the resulting model. Hirano et al. [14]
presented a multimodal modeling method with multitask learning
to recognize multiple labels, such as interest levels, sentiment levels
and next-action decisions, to implement adaptation strategies for
multimodal dialogue systems. In many previous works, ground
truths (labels) were carefully determined by aggregating annotation
results obtained using multiple coders or self-reported annotation
results. However, the influence of disagreement among coders on
the accuracy of SSP cannot be ignored.We propose aWSL algorithm
that can train robust SSP models with inaccurate labels on human-
system dialogue interactions.

2.2 ML with subjectively annotated labels
Social signal perception is subjective and thus often results in dis-
agreement among coders (annotators). It is difficult to improve
model accuracy by removing samples with disagreeing labels from
the training dataset. There are two existing approaches for solving
this problem. One approach involves focusing on how to define re-
liable labels from subjectively annotated labels. The other approach
explicitly trains the differences in the labels produced by multiple
coders [17, 23, 29].Earlier studies explored approaches for avoiding
coder disagreement and merging different labels given by the mul-
tiple coders recruited through crowdsourcing via majority voting
[36]. Ozkan et al. [29] proposed a two-step conditional random
field (CRF), which was designed for a backchannel prediction task.
Inoue et al. [17] proposed a recognition model for user engagement
in human-robot interactions using a hierarchical Bayesian model
that estimates both the engagement level and the characteristics
of each coder as latent variables. Kumano et al. [23] proposed a
probabilistic model for integrating labels of empathy as perceived
by coders. The model was used to capture how gazes and facial
expressions co-occur between a pair of participants. Lotfian and
Busso [25] proposed a method for designing a machine learning
curriculum to maximize efficiency during the DNN training process
for emotion recognition in speech by considering disagreements in
crowdsourced labels.

Recent research has shown that curriculum learning plays a
similar role to weakly supervised learning (WSL) in terms of inac-
curate supervision. If we assume that label disagreement is noise
for supervised learning, the WSL approach can avoid the effect
of label disagreement. Although WSL is promising for improving
image segmentation [43] and image retrieval [24] accuracy, recent
research has not focused on utilizing WSL for SSP tasks.

2.3 Weakly supervised learning
The setting in which some labels are not reliable is called inaccurate
supervision. Weakly supervised learning (WSL) is a research area
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Figure 1: Overview of weakly supervised multitask learning for SSP

that aims to build a robust prediction model for inaccurate super-
vision [45]. Many algorithms have been proposed to train robust
models with noisy labels. Several studies have attempted to esti-
mate noise transition matrices and correct loss functions [12, 30].
However, it is difficult to estimate a noise transition matrix. An
alternative approach is to train a model by using selected samples,
e.g., via MentorNet [18], decoupling [26], and co-teaching [13]. In
addition, many loss functions that are robust to noise labels have
been proposed, e.g., the symmetric cross-entropy [34] and gener-
alized cross-entropy functions [44]. Han et al. [13] showed that
co-teaching yields better experimental results than decoupling and
MentorNet, so we modify the co-teaching algorithm using three
networks (we call this approach tri-teaching). We require a large
quantity of labeled data to achieve high performance with a large-
scale DNN. However, it is not easy to collect reliable annotated data
for dialogue systems. The utilization of a multitask learning (MTL)
algorithm is an efficient approach for mitigating the data limitation
problem. To mitigate both the inaccurate label problem and the
data limitation problem, which are inherently caused in SSP tasks,
we integrate MTL and WSL algorithms. We show that integrating
MTL and state-of-the-art WSL can improve accuracy.

3 PROPOSED APPROACH
An overview of the proposed algorithm for the human-agent dia-
logue setting is shown in Figure 1. We propose four weakly super-
vised multitask learning (MT-WSL) algorithms as follows:

MT+WSL(1): Multitask learning with co-teaching [13]
MT+WSL(2): Multitask learning with co-teaching+ [38]
MT+WSL(3): Multitask learning with tri-teaching
MT+WSL(4): Multitask learning with tri-teaching+

Tri-teaching and tri-teaching+ are extensions of co-teaching and
co-teaching+, respectively. In Section 3.2, we propose a new weakly
supervised learning method, tri-teaching, which aims to overcome
the data limitations of the SSP task. In Section 3.3, we combine WSL

methods with MTL by considering situations where three similar
labels are annotated for each sample xi .

3.1 Preliminaries
We frame the social signal recognition task as a classification task;
that is, we consider a K-class dataset with a feature vector for
sample xi and its associated reference label yi ∈ {1, 2, · · · ,K}. Let
f (·) denote a neural network model. We denote the probability of
each label for sample xi , which is output by the trained model, as
p(k |xi ), where k ∈ {1, 2, · · · ,K}, and the ground-truth distribution
for sample xi as q(k |xi ), where

∑K
k=1 q(k |xi ) = 1, q(yi |xi ) = 1, and

q(k |xi ) = 0 for all other k , yi . As preliminaries of the proposed
method, we employ two types of ensemble methods: co-teaching
and co-teaching+.

Co-teaching: Co-teaching maintains and trains two networks,
f (1) and f (2), simultaneously [13]. In each minibatch, we use the
model f (1) (resp. f (2)) to select small-loss samples D(1) (resp. D(2)).
The number of selected samples is determined by λ(E), where E is
the current epoch. We select λ(E) percent of the small-loss samples
in each minibatch. Then, the selected samples in f (1) (resp. f (2))
are sent to the peer network f (2) (resp. f (1)) as training data to
update the parameters. A DNN can filter out noisy samples at the
beginning of the training process because DNNs learn easy/clean
data first [2, 42]. However, the problem is that a DNN starts to fit
noisy data as the training process proceeds. We gradually decrease
λ(E) so that we can remove noisy data before the DNN fits noisy
labels. λ(E) is defined as 1 −min{τ , EEk τ }, where τ is the estimated
noise ratio and Ek is a hyperparameter for controlling λ(E). λ(E)
is a decreasing function in terms of the number of epochs, and
λ(1) = 1. After Ek epochs, λ(E) is fixed to τ , and (1 − τ ) samples
are used to update the parameters. A small Ek (large Ek ) reduces
λ(E) gradually (rapidly).

Co-teaching+: Co-teaching+ is an extension of the co-teaching
method [38], which has the problem by which two models converge
to similar statuses with an increase in the number of epochs. To
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Figure 2: Overview of the tri-teaching algorithm

overcome this drawback, co-teaching+ combines the “update by dis-
agreement” strategy proposed in the decoupling algorithm of [26]
with co-teaching. In the decoupling algorithm of [26], the disagree-
ing samples are selected as follows. Let two DNN networks f (1) and
f (2) have the same architecture but different weight initializations.
In each minibatch, the algorithm selects samples where the predic-
tion labels disagree by the following rule: D

′

={(xi ,yi ): y
(1)
i , y

(2)
i },

where y(1)i and y
(2)
i are the labels predicted by f (1) and f (2), re-

spectively. Among the disagreeing samples, each model selects
small-loss samples and sends them to its peer models for the pa-
rameter update phase in the same manner as co-teaching.

3.2 Enhancement of WSL
We propose tri-teaching, which is an extension of co-teaching. The
overview of this method depicted in Figure 2. Co-teaching excludes
some training samples, but this can reduce the generalization ability
of the resulting model because the size of the dataset decreases. Tri-
teaching can exploit training data more efficiently than co-teaching,
as union sets are obtained from the other two models.

Tri-teaching: The algorithm is shown in Algorithm 1. We main-
tain three neural network models: f (1), f (2), and f (3). In each mini-
batch, each of the three models selects small-loss samplesD(1),D(2),
andD(3), respectively (lines 5-7 in Algorithm 1). Here, Loss(D

′

; f (i))
denotes the sum of the losses in minibatch D

′

calculated by model
f (i). To update model f (1), we use D(2) ∪ D

(3). Similarly, we use
D
(1)
∪ D
(3) and D

(1)
∪ D
(2) to update f (2) and f (3), respectively

(lines 8-10 in Algorithm 1). After the three models are trained, a
result is obtained by averaging the model outputs.

Tri-teaching+: The concept of tri-teaching+ is the same as that
of co-teaching+. We maintain three networks: f (1), f (2) and f (3).
In each minibatch D, we select disagreeing samples: D

′

= {(xi ,yi ) :
¬(y
(1)
i == y

(2)
i == y

(3)
i )}, where y

(m)
i is a label predicted by the

estimates of model f (m). From the disagreeing samples, each model
selects small-loss samples D(1), D(2), and D

(3), and these data are
used for updating, similarly to the process used in tri-teaching.

3.3 Weakly supervised multitask learning
To address the limitations regarding the quantity of available train-
ing data, we use multitask learning (MTL), which incorporates
information from other tasks. MTL is a machine learning approach
that simultaneously solves multiple learning tasks while exploiting
the commonalities and differences across the tasks [9]. Generally,
an MTL model consists of shared layers and task-specific layers.

Algorithm 1: Tri-teaching algorithm

input : initial models f (1), f (2), f (3); learning rate η; epoch
Ek ; Emax; training dataset D; batch size B;
estimated noise rate τ

1 for E = 1, 2, · · · ,Emax do
2 Shuffle training dataset D into |D |B minibatches;
3 for N = 1, · · · , |D |B do
4 Fetch a minibatch D from D;

5 Select D(1) = argminD′ : |D′ | ≥λ(E) |D |Loss(D
′

; f (1));

6 Select D(2) = argminD′ : |D′ | ≥λ(E) |D |Loss(D
′

; f (2));

7 Select D(3) = argminD′ : |D′ | ≥λ(E) |D |Loss(D
′

; f (3));

8 Update f (1) ← f (1) − η∇Loss(D
(2)
∪ D
(3); f (1)) ;

9 Update f (2) ← f (2) − η∇Loss(D
(1)
∪ D
(3); f (2)) ;

10 Update f (3) ← f (3) − η∇Loss(D
(1)
∪ D
(2); f (3)) ;

11 end for
12 Update λ(E) = 1 −min{τ , EEk τ }
13 end for

output : f (1), f (2), f (3)

The lower layers are shared across all tasks, while the higher layers
are maintained as task-specific layers, as shown in Figure 1.

The loss function per task Lt for sample xi is defined as

Lt (xi ,yi,t ) = −
K∑
k=1

qt (k |xi ) log(pt (k |xi )) (1)

where yi,t is the associated label, pt (k |xi ) is output of the trained
model, and qt (k |xi ) is the ground-truth distribution for task t ∈ T .
Hereafter, we explain the process with a case containing three
tasks, i.e., T = {task1, task2, task3}. Let the loss functions of the
three tasks be Ltask1, Ltask2, and Ltask3; then, the loss function
for MTL Lmulti is defined as Lmulti = Ltask1 + Ltask2 + Ltask3.
The subtasks, task1 to task3, correspond to the classification tasks
of the three labels (e.g., the sentiment labels) in each corpus (see
"Output: Y" on the right side of Figure 1 and Section 4.2). In our
MTL setting, our motivation is to learn all tasks equally, and the
equally weighted loss of each task is used as the loss function.

We combine MTL with WSL methods in the following procedure.
We use Lmulti to select the small-loss samples. In co-teaching+ and
tri-teaching+, which use prediction disagreement for the update
step, if one of the three tasks’ predictions is different, we use the
sample to update the parameters.

4 DATA
We used two shared multimodal dialogue datasets: Hazumi1712
and Hazumi1902, which are a part of the corpus in [20].

4.1 Recording settings and datasets
A virtual agent, MMD-agent2, was used as the interface, as shown
on the left side of Figure 1. The participants talked with the agent

2http://www.mmdagent.jp/
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on a display. The behaviors of the participants were recorded using
a video camera and a Microsoft Kinect V2 sensor. The virtual agent
was manipulated by theWoZ method. The operator pretended to be
a dialogue system. No specific task was defined; chat dialogues were
utilized. The Hazumi1712 dataset was collected to analyze users
interest levels and sentiment states. The operator selected ques-
tions or responses from the wizard interface for six topics that were
selected by the participant in a random order [21]. The number of
participants was 30 (15 males and 15 females), and their ages ranged
from 20 to 50 years. The Hazumi1902 dataset was collected to ana-
lyze an adaptive dialogue strategy so that users could enjoy talking.
The operator selected utterances and appropriately changed topics.
For example, if participants were not interested in the topic, the
operator changed the topic. If the participants seemed to enjoy talk-
ing with the system, the operator served the role of a good listener.
The number of participants was 30 (10 males and 20 females), and
their ages ranged from 20 to 70 years. The Hazumi1902 recording
settings were the same as that of Hazumi1712, but the dialogue
strategies of the WoZ operator and participants were different.

4.2 Definitions and statistics of labels
We used four labels per exchange: (1) the interest level (IN), (2)
self-sentiment levels felt by participants (SS), (3) sentiment levels
annotated by third-party coders (TS), and (4) topic continuance level
(TC). (1) IN helped the system determine the timing for changing
topics. (2) SS and (3) TS helped the system recognize whether the
user was enjoying the dialogue and adapt its utterances to the users.
(4) TC captured whether the system should continue with or change
the current topic. (1) IN was annotated with three choices: interest
(o), unknown (t), and no interest (x). (2) SS, (3) TS, and (4) TC were
annotated on a seven-point scale [14]. Each exchange had three
labels: (1) IN, (3) TS, and (4) TC in Hazumi1712 and (2) SS, (3) TS,
and (4) TC in Hazumi1902.

4.2.1 Statistics of annotations. The multiple labels annotated for
the exchanges can be used for multitask learning. The agreement
values (Cronbach’s alpha values) were 0.86 and 0.86 for (3) TS and
(4) TC in Hazumi1712 and 0.86 and 0.82 for (3) TS and (4) TC in
Hazumi1902, respectively. The average agreement value was 0.50
(Fleiss’ kappa) for (1) IN in Hazumi17123. These values showed
high agreement but were not identical. The correlations between
labels are shown in Table 1. From the left table, three labels in
Hazumi1712 were highly correlated with each other, as the corre-
lation values ranged from 0.62 to 0.87. Conversely, from the right
table for Hazumi1902, the correlation values between (2) SS and the
other two labels, (3) TS and (4) TC, were lower than those between
the other pairs. This means that the self-sentiment labels anno-
tated by the participants were different from the sentiment labels
produced by third-party coders or the topic continuance labels in
Hazumi1902.

4.2.2 Ternary labels. Averaged annotated scores (AASs) were cal-
culated for each sample and were converted into ternary labels
(high, neutral, and low). More specifically, for (1) IN, we regarded
interest (o) as 1, unknown (t) as 0, and no interest (x) as −1 and
calculated the corresponding AAS. Exchanges with AAS values

3This dataset was composed of 3 discrete labels, so kappa was used.

Table 1: Correlation matrices between labels

Hazumi1712
(3) TS (4) TC

(1) IN 0.62 0.87
(3) TS - 0.63

Hazumi1902
(3) TS (4) TC

(2) SS 0.40 0.28
(3) TS - 0.69

Table 2: Label distribution (%)

Hazumi1712 Hazumi1902
Class (1) IN (3) TS (4) TC (2) SS (3) TS (4) TC
High 32.6 43.7 38.1 49.1 49.8 44.7

Neutral 28.8 37.8 34.2 30.5 42.7 39.4
Low 38.6 18.5 27.7 20.4 7.5 15.9
Total 2,261 samples 2,337 samples

higher than 1/NA and lower than −1/NA were given high and low
labels, respectively, where NA is the number of annotators. The
other exchanges were neutral. In the cases of the (2) SS, (3) TS, and
(4) TC labels, which were annotated on 7-point scales, exchanges
with AAS values higher than 4.5 and lower than 3.5 were given
high and low labels, respectively. The other exchanges were neutral.
The label distributions are shown in Table 2.

4.3 Multimodal features
The multimodal feature set 4 was automatically extracted in the
same manner as in [14][19].

4.3.1 Acoustic features. Acoustic features were extracted per ut-
terance using openSMILE software. The features used in [31] were
used. The types of utilized acoustic features were the root mean
square frame energy (RMSenergy), mel-frequency cepstral coeffi-
cients, zero-crossing rate, voice activity probability based on VAD
(VoiceProb), and fundamental frequency (F0). For each of these
features, delta coefficients were also calculated.

4.3.2 Visual features. Visual features are composed of facial fea-
tures and motion features. We used OpenFace [3] to extract facial
features. We used 10 facial feature points around both eyes and the
mouth. The velocities between frames and the absolute values of
the between-frame accelerations were calculated. In addition, we
used the occurrence proportions of 18 action units.

The participants joint positions with 3D coordinates were ob-
tained fromMicrosoft Kinect V2. The positions were used to extract
the corresponding motion features.

4.3.3 Linguistic features. We extracted linguistic features from the
utterances of the participants and dialogue log data. Linguistic
features were extracted from text data, which were the results of
automatic speech recognition (ASR) for the recorded audio data.
The frequencies (denoted as bag-of-words (BoW)) and parts of
speech (PoSs) of words were obtained as linguistic features after
the morphological analysis using MeCab [22]. The features of the
system utterances were extracted from dialogue logs. We used the
numbers of words in a system utterance (lenS) and a user utterance
(lenU ), their difference (lenS − lenU ), the duration of a system
utterance and the types of the system utterances.
4The detail is shown in
https://www.jaist.ac.jp/~okada-s/paper/MultimodalFeatures_ICMI2021.pdf
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5 EXPERIMENTAL SETTINGS
5.1 Experiment types and measurements
Two types of experiments were conducted: one took place in a "one-
corpus setting", where the training and test data came from the
same dataset, and the other took place in a "cross-corpus setting",
where we used one dataset for training and the other dataset for
testing. The cross-corpus setting was important for assessing the
generalization performance of the model. The two datasets had
two common labels: (3) TS and (4) TC. Thus, we used these two
labels for the cross-corpus setting. We did not use linguistic features
because the BoW dictionaries were different in the two corpora.
We report the average accuracy values obtained by the methods
on the test dataset in Section 6.4. In the one-corpus setting, 10-fold
cross validation was conducted. In the cross-corpus setting, we
trained and tested the models 3 times with random initialization
and reported their average accuracies.

5.2 Comparative methods
We prepared multiple comparative algorithms to evaluate the per-
formance of the proposed MT-WSL algorithms.

5.2.1 Single-task DNN (ST-DNN). We used a DNN with multiple
fully connected layers and dropout after each layer. The unimodal
model consisted of one hidden layer with 100 units. After concate-
nating the output units of the three unimodal models, the layer
with the concatenated units was connected to one hidden layer that
also had 100 units. Finally, we added an output layer with three
dimensions.

5.2.2 Multitask DNN (MT-DNN). The architectures of the lower
layers were the same as that of the single-task DNN. After concate-
nating the output units of the three unimodal models, the layer
with the concatenated units was connected to add one task-specific
layer with 100 units for the three tasks. Finally, we added an output
layer with three dimensions after each task-specific layer. In both
the single-task and multitask DNNs, we set the batch size to 100,
the total number of epochs to 80, and the dropout rate to 0.5. We
used the Adam optimizer and set the learning rate to 0.001.

5.2.3 Multitask DNN with curriculum learning (MT-CL). The strat-
egy that learns simpler samples before more difficult samples is
called curriculum learning [5]. It is well known that the effective-
ness of curriculum learning is partially similar to that of weakly
supervised learning. We used two curriculum learning strategies
proposed in [25].
Pretrainingmethod (MT-CL-pre):This strategy used a pretrained
model to determine a curriculum.We trained a model using all train-
ing samples for ECLP epochs. After training, the models were tested
with the same training samples. Equation (2) was used to define the
difficulty di of sample xi ,

di =

{
−p(yi |xi ), if yi = yi
p(yi |xi ), if yi , yi

(2)

where yi is a label predicted by the model. An easy sample xi has a
smaller di than a difficult sample. The idea behind this strategy is
that a sample is easy to predict if it can be predicted correctly even
with a small number of training epochs because the DNN learns

simple patterns first [2]. We denote this strategy as MT-CL-pre.
Intercoder agreementmethod (MT-CL-agree):The second strat-
egy used the level of disagreement between coders to determine
a curriculum. If the coder agreement was low for a sample, we
considered the sample ambiguous (difficult). The difficulty di is
defined as

di =

∑Ai
j [yi j , ŷ]

Ai
(3)

where ŷ is the consensus label obtained by majority voting, Ai is
the number of coders, and yi j is the label assigned by coder j for
sample xi . We denote this strategy as MT-CL-agree.

Based on these two strategies, we divided the training samples
into three bins, where the first bin contained the easiest samples.
During the first ECLA1 epochs, we trained the models using only
the easiest samples. Between epochs ECLA1 and ECLA2, we added
medium-difficulty samples to the training process. After ECLA2
epochs, we used all of the training samples. We combined MTL with
CL in the following procedure. First, we calculated the difficulty di,t
of sample xi for task t using Equations (2) and (3).We defined the dif-
ficultydi,multi of sample xi in the multitask setting as a summation
of the three task difficulties:di,multi = di,task1+di,task2+di,task3.

5.3 Hyperparameters and fusion method
The parameter settings forWSL are described here. For the proposed
WSL algorithms, we set the estimated noise ratio τ to 0.2 in the
one-corpus setting and to 0.6 in the cross-corpus setting; Ek was
set to 25 for both settings. For CL, in the case of the self-sentiment
label in Hazumi1902, which was annotated by only one person, we
defined the disagreement difficulty di,multi using only the other
two labels. For MT-CL-pre and MT-CL-agree, we set the number of
epochs ECLP = 30, ECLA1 = 30, and ECLA2 = 60.

Early fusion and late fusion were used to fuse different modali-
ties. In early fusion, the feature vectors from different modalities
were concatenated into one feature vector. Late fusion combined
the results of the trained unimodal models into a final output, as
shown on the right side of Figure 1. We observed that late fusion
outperformed early fusion, so we report the results of late fusion.

6 RESULTS
Three research questions (RQs) were addressed in the experiments,
each of which corresponded to the subsections after Section 6.2.
RQ1: How does WSL contribute to tasks involving unreliable an-

notated labels?
RQ2: How does combining WSL and MTL contribute to task per-

formance compared with other algorithm?
RQ3: How does MTL+WSL contribute to preventing performance

degradation in a cross-corpus setting?

6.1 Effectiveness of multimodal fusion
We investigated the effectiveness of multimodal fusion for a multi-
task weakly supervised learning model. Table 3 shows the classifi-
cation accuracies of three unimodal (audio, visual and linguistic)
models and multimodal models with the three modality features
obtained by using tri-teaching. From Table 3, the best accuracies
for TS and TC (these impression scores) on Hazumi1902 (77.5, 73.3)
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Table 3: Effectiveness ofmultimodal fusion for the proposed
MT-WSL models with tri-teaching

[%] Hazumi1712 corpus Hazumi1902 corpus
Modality IN TS TC SS TS TC
Audio 55.6 58.1 57.4 52.5 74.6 69.2
Visual 45.5 53.6 47.5 52.9 70.4 66.0

Linguistic 55.6 56.6 56.5 56.1 74.4 70.7
Multimodal 61.4 62.4 63.1 59.7 77.5 73.3

Table 4: The contribution of weakly supervised learning
(WSL) and multitask learning (WSL model: tri-teaching)

[%] Hazumi1712 corpus Hazumi1902 corpus
IN TS TC SS TS TC

Majority 38.6 43.7 38.1 49.1 49.8 44.7
ST-DNN 59.4 61.8 60.9 58.6 76.2 72.5
MT-DNN 60.5 62.1 62.4 57.8 77.2 73.1

ST-WSL-DNN 60.4 61.2 61.0 60.2 77.3 73.7
MT-WSL-DNN 61.4 62.4 63.1 59.7 77.5 73.3

were significantly better than those on Hazumi1712 (62.4, 63.1).
From the finding that the number of utterances with low-level
sentiments in Hazumi1712 was greater than that in Hazumi1902
(Table 2), it was found that estimating low-level sentiment is a more
difficult task for models. In the comparison among the unimodal
and multimodal models, the multimodal models generated by the
MT-WSL algorithm obtained the best accuracies on all six tasks, so
multimodal fusion promises to improve the classification accuracy.
In Sections 6.2 to 6.4, we evaluate the performance of the algorithms
through a multimodal model comparison.

6.2 Contribution of WSL (RQ1)
We investigated whether MTL or WSL contributed more to the
recognition tasks by conducting ablation tests, in which the MTL
or WSL strategy was removed from MT-WSL. The MT-WSL is an
algorithm that integrates multitask learning (MTL) and weakly su-
pervised learning (WSL). Table 4 shows the classification accuracy
comparison among the single-task learning model (ST-DNN), mul-
titask learning model (MT-DNN), weakly supervised single-task
learning model (ST-WSL-DNN), and weakly supervised multitask
learning model (MT-WSL-DNN). The tri-teaching model was used
as the WSL algorithm. MT-WSL-DNN obtained the best accuracies
on four tasks (all labels in Hazumi1712 and TS in Hazumi1912) at
61.4%, 62.4%, 63.1%, 77.5%. ST-WSL-DNN obtained the best accuracy
on two tasks (SS and TC in Hazumi1912) at 60.2% and 73.7%, respec-
tively. The results show that an ensemble-based sample selection
strategy with weakly supervised learning is effective in improving
model accuracy.

To investigate the difference in effectiveness between MTL or
WSL, we compared the accuracies of MT-DNN (without WSL) and
ST-WSL-DNN (without MTL). The accuracies of MT-DNN on all
tasks in Hazumi1712 were better than those of ST-WSL-DNN, so
the multitask strategy was more effective than the WSL strategy for
Hazumi1712. Conversely, ST-WSL-DNN obtained better results for
all tasks in Hazumi1902, so MTL andWSL contributed to improving

Table 5: Classification accuracies of multitask learning with
weakly supervised learning

[%] Hazumi1712 corpus Hazumi1902 corpus
IN TS TC SS TS TC

Majority 38.6 43.7 38.1 49.1 49.8 44.7
ST-DNN 59.4 61.8 60.9 58.6 76.2 72.5
MT-DNN 60.5 62.1 62.4 57.8 77.2 73.1
MT-CL-pre 60.6 62.3 62.8 57.5 76.7 72.8
MT-CL-agree 60.5 62.5 62.9 57.7 77.5 73.0

MT-WSL (Proposed)
Co-teaching 61.0 62.9 63.2 58.4 77.3 74.1
Co-teaching+ 59.0 61.6 61.9 59.4 77.5 74.5
Tri-teaching 61.4 62.4 63.1 59.7 77.5 73.3
Tri-teaching+ 60.3 61.1 62.2 59.6 77.9 74.5

Table 6: Classification accuracies of multitask learning with
weakly supervised learning in cross-corpus settings

[%] train1712→ test1902 train1902→ test1712
TS TC TS TC

Majority 49.8 44.7 43.7 38.1
MT-DNN 63.2 56.2 56.5 51.9
MT-CL-pre 64.1 56.4 56.7 52.4
MT-CL-agree 63.0 55.5 56.3 51.6

MT-WSL (Proposed)
Co-teaching 63.6 58.6 56.8 52.2
Co-teaching+ 64.4 58.0 55.9 51.5
Tri-teaching 66.8 63.6 57.2 52.2
Tri-teaching+ 63.9 58.6 55.5 51.6

the accuracy of the model for different tasks. From these results, it
can be seen that MT-WSL-DNN took advantage of both MTL and
WSL because it obtained the best accuracies on four tasks and the
second-best accuracies on the other two tasks.

6.3 Comparison with other algorithms (RQ2)
We compared the accuracies of the multitask WSL strategies and
comparative algorithms, including multitask curriculum learning
algorithms. Table 5 shows the accuracies of multitask learning for
the two datasets. In the comparisons between the multitask WSL
algorithms (MT-WSL) and non-WSL algorithms, the best accuracy
across all tasks was obtained by MT-WSL. In the experiments with
the Hazumi1712 corpus, the best performances of the MTL+WSL
models for the three labels, (1) IN, (3) TS, and (4) TC, were 61.4% (tri-
teaching), 62.9% (co-teaching) and 63.2% (co-teaching), respectively,
which were better than the best accuracy of MT-CL (60.6%, 62.5%
and 62.9%, respectively). In the experiment with the Hazumi1902
corpus, MTL+WSL outperformed the best accuracy of MT-CL on
all tasks. The best (2) SS, (3) TS and (4) TC performances were
59.7% (tri-teaching), 77.9% (tri-teaching+) and 74.5% (co-teaching+
and tri-teaching+), respectively. Although the best WSL model
differed depending on the given task, the tri-teaching-based models
obtained the best accuracy in four tasks, so increasing the number
of ensemble models (from two to three) tended to contribute to the
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recognition tasks. However, in the comparison between the MT-
WSL algorithms and non-WSL algorithms, the improvements in
accuracy achieved by the best MT-WSL algorithm were in the range
from 0.3% (TC in Hazumi1712) to 1.4% (TC in Hazumi1902), which
were not significant. The MT-WSL algorithms are appropriate for
tasks with small amounts of data, so we need to further analyze
how large of a data sample is required for these algorithms. The
exploration of these issues will be addressed in future work.

6.4 Cross-corpus experiment (RQ3)
We compared the classification accuracies of the models in a cross-
corpus setting, which is more realistic, because a model trained
with one corpus is often used in the recognition modules of differ-
ent dialogue systems (with different dialogue scenarios or partici-
pants). Table 6 shows the classification accuracies obtained in the
cross-corpus setting. Although the results in Table 6 were worse
than the results in Table 5, this was expected because the cross-
corpus setting was more difficult. Columns 2 and 3 show the re-
sults of training with Hazumi1712 and testing with Hazumi1902
(train1712→test1902). Columns 4 and 5 show the results of the
opposite case (train1902→test1712).

In the case of train1712→test1902, the accuracies of the MT (MT-
DNN) were 63.2% and 56.2% for (3) TS and (4) TC, respectively,
while the MT+WSL method obtained the best accuracies: 66.8%
(tri-teaching) and 63.6% (tri-teaching). MT+WSL outperformed the
simpleMTmethod in terms of accuracy by 3.6% and 7.4% and outper-
formed MT-CL by 2.7% and 7.2%. In the case of train1902→test1712,
the accuracies of the simple MT method were 56.5% and 51.9%,
while the best accuracies were 57.2% (tri-teaching) and 52.4% (MT-
CL-pre). The improvement in train1902→test1712 was smaller than
that in train1712→test1902. We speculate that the reason for this
is that, as shown in Table 2, the label distribution of Hazumi1902
was biased and the quantity of low-class data was insufficient.

7 DISCUSSION AND CONCLUSION
The advantages and limitations of the proposed methods are dis-
cussed based on the experimental results (Tables 5 and 6). After the
discussion, we conclude this study.

Difference between tri-teaching and curriculum learning:
We discuss the reason why the accuracies of the WSL-based al-
gorithm were better than those of other algorithms. In particular,
MT+WSL obtained better accuracy than the curriculum learning
(CL-based) algorithms in the cross-corpus setting. The main differ-
ence between WSL- (tri-teaching) and CL-based algorithms lies in
how to select the samples that have priority for use as training data.
On the one hand, CL-based algorithms (MT-CL-pre and MT-CL-
agree) determine the order of training samples before the model
is trained on the basis of the output of the pretraining model or
the agreement of annotators. On the other hand, ensemble-based
WSL algorithms (tri-teaching or co-teaching) select the training
samples per epoch for training the model based on majority voting
with respect to the outputs of ensemble models (Algorithm 1). From
the results, it can be seen that the approach of sample selection
per epoch in the ensemble-based WSL algorithms is effective for
obtaining better accuracy in the cross-corpus setting.

Co-teaching vs tri-teaching: We discuss the contribution of
tri-teaching and tri-teaching+ methods by comparing them with co-
teaching and co-teaching+. In the cross-corpus setting, co-teaching+
and tri-teaching+ did not work well, so the strategy in these algo-
rithms that selects samples where the prediction labels disagree
was not effective. From Table 5, the performance of co-teaching
and that of tri-teaching were quite similar, so tri-teaching using
three models did not improve the accuracy in the one-corpus set-
ting. Conversely, tri-teaching outperformed co-teaching, with a
maximum improvement of 5% in the cross-corpus setting, as shown
in Table 6, so increasing the number of ensemble models has the
potential to select effective samples for training a task-independent
robust model.

Conclusion: In this paper, we defined three critical problems
with respect to the recognition of user social signals in human-
machine communications: (i) the unreliable annotated labels in
training samples, (ii) the high cost of collecting multimodal inter-
action data, and (iii) the dependency of models on training data.
We first incorporated the two methods, multitask learning (MTL)
and weakly supervised learning (WSL), into the SSP task. We have
demonstrated their potential through our experiments. The experi-
mental results clarified the contributions designed to mitigate the
three problems in this paper. First, the WSL algorithms slightly
improved the classification accuracies of both single-task and mul-
titask DNNs in almost all tasks for the two tested corpora. This
result indicates that the unreliable label problem can be alleviated
by proposed WSL (thereby addressing Problem (i) and RQ1). Sec-
ond, combining WSL with MTL worked well even with a small
amount of multimodal interaction training data (thus addressing
Problem (ii) and RQ2). Third, among the proposed WSL strategies,
tri-teaching obtained the best accuracies under the cross-corpus
setting for the three tasks (thus addressing Problem (iii), RQ3).
MTL+WSL could prevent accuracy degradation more effectively
than other algorithms (a maximum of 7.2%). However, the improve-
ment in the one-corpus setting was less than 2%, so the model needs
to be refined further.

There are several future research directions to enhance MT-WSL.
The first direction is to improve the performance of MT-WSL by
integrating ensemble-based methods such as tri-teaching and ro-
bust loss methods (e.g., [44]). The second direction is to extend
tri-teaching to N-teaching with N ensemble models and to validate
the robustness of the extended version. We need to explore how to
exchange (smaller loss) samples to enhance N-teaching. Investigat-
ing a suitable fusionmethod and exploring the successful conditions
of WSL with various kinds of data corpora will be addressed in
future work. The third direction is to validate the robustness of
the proposed algorithm on a more difficult cross-corpus setting,
with corpora that include participants who have different cultural
backgrounds and speak different languages. The fourth direction is
to implement an adaptive dialogue system with a SSP recognition
module based on the proposed learning method.
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